ERGMs are Hard

نویسندگان

  • Michael J. Bannister
  • William E. Devanny
  • David Eppstein
چکیده

We investigate the computational complexity of the exponential random graph model (ERGM) commonly used in social network analysis. This model represents a probability distribution on graphs by setting the log-likelihood of generating a graph to be a weighted sum of feature counts. These log-likelihoods must be exponentiated and then normalized to produce probabilities, and the normalizing constant is called the partition function. We show that the problem of computing the partition function is #P-hard, and inapproximable in polynomial time to within an exponential ratio, assuming P 6= NP. Furthermore, there is no randomized polynomial time algorithm for generating random graphs whose distribution is within total variation distance 1 − o(1) of a given ERGM. Our proofs use standard feature types based on the sociological theories of assortative mixing and triadic closure. ar X iv :1 41 2. 17 87 v1 [ cs .D S] 4 D ec 2 01 4

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Auxiliary Parameter MCMC for Exponential Random Graph Models

Exponential random graph models (ERGMs) are a well-established family of statistical models for analyzing social networks. Computational complexity has so far limited the appeal of ERGMs for the analysis of large social networks. Efficient computational methods are highly desirable in order to extend the empirical scope of ERGMs. In this paper we report results of a research project on the deve...

متن کامل

Inference in Curved Exponential Family Models for Networks

Network data arise in a wide variety of applications. Although descriptive statistics for networks abound in the literature, the science of fitting statistical models to complex network data is still in its infancy. The models considered in this article are based on exponential families; therefore, we refer to them as exponential random graph models (ERGMs). Although ERGMs are easy to postulate...

متن کامل

Discrete Temporal Models of Social Networks

We propose a family of statistical models for social network evolution over time, which represents an extension of Exponential Random Graph Models (ERGMs). Many of the methods for ERGMs are readily adapted for these models, including MCMC maximum likelihood estimation algorithms. We discuss models of this type and give examples, as well as a demonstration of their use for hypothesis testing and...

متن کامل

Adjusting for Network Size and Composition Effects in Exponential-Family Random Graph Models.

Exponential-family random graph models (ERGMs) provide a principled way to model and simulate features common in human social networks, such as propensities for homophily and friend-of-a-friend triad closure. We show that, without adjustment, ERGMs preserve density as network size increases. Density invariance is often not appropriate for social networks. We suggest a simple modification based ...

متن کامل

Exponential-family random graph models for valued networks.

Exponential-family random graph models (ERGMs) provide a principled and flexible way to model and simulate features common in social networks, such as propensities for homophily, mutuality, and friend-of-a-friend triad closure, through choice of model terms (sufficient statistics). However, those ERGMs modeling the more complex features have, to date, been limited to binary data: presence or ab...

متن کامل

A Simulation Study Comparing Epidemic Dynamics on Exponential Random Graph and Edge-Triangle Configuration Type Contact Network Models

We compare two broad types of empirically grounded random network models in terms of their abilities to capture both network features and simulated Susceptible-Infected-Recovered (SIR) epidemic dynamics. The types of network models are exponential random graph models (ERGMs) and extensions of the configuration model. We use three kinds of empirical contact networks, chosen to provide both varie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1412.1787  شماره 

صفحات  -

تاریخ انتشار 2014